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NONLINEAR MASS TRANSFER BETWEEN A GAS AND A
FALLING LIQUID FILM.
3. MULTICOMPONENT MASS TRANSPORT

Khr. Boyadzhiev UDC 532.72:532.529

A solution is obtained for the problem of multicomponent mass transfer between a
gas and a falling liquid film. The case is considered in which the mass transfer
of one of the components is limited by the nonlinear mass transport in the gas
phase. The rates of multicomponent mass transport in the gas and liquid phases
are determined.

In the first and second parts of this work [1l, 2] it was shown that nonlinear mass
transfer (as a result of intensive mass transport in the gas phase) leads to significant
changes in the velocity distributions in the liquid and gas. In the case of multicomponent
mass transport this leads not only to changes in the rates of transport of the components
with the large concentration gradients but also to changes in the rates of transport of the
components for which the concentration gradients do not influence the hydrodynamics of the
flow.

The literature contains a number of experimental studies [3-5] in which it has been
shown that as a result of simultaneous mass transfer in gas-liquid and liquid-liquid systems
the transport of one component leads to changes in the rates of transport of the others. In
these cases an increase in the rate of mass transfer is usually observed which is caused by
the Marangoni effect, since this cannot be explained using the linear theory of mass trans-
port [6].

In the present paper the effect will be considered for the case of multicomponent mass
transport for the case in which the concentration gradient of one of the components in the
gas phase influences the hydrodynamics of the flow.

Mathematical Description. The theory of diffusion in multicomponent systems [7, 8]
shows that the approximation of independent diffusion can be used not only in the case when
the concentrations of the components are low, but also when the diffusion coefficients of
the individual components are similar. This makes it possible to solve the problem of the
kinetics of nonlinear mass transfer between a gas and a falling liquid film in multicompon-
ent systems by solving the problem for the transport of any component to the approximation
of the linear theory of mass transport, where the velocity distribution takes into account
the effects of the nonlinear mass transport of one of the components.

Let ¢, and c, be the concentrations of any component in the gas and liquid, where mass

Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia. Translated
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transport of this component does not influence the hydrodynamics of the flow. The distri-
butions of these concentrations are determined from the system of equations

R I
by to gy =D
x =0, 5125103 y=h, 51:7(101; Y— o, 2122'102 W
aCl acl 6201 .
U ——— 4 v =D, ;
0x dy dy?
b5) ”
x=0, ¢y = Cip} y:(), azl =0 y:h, [1:11,

where the mass fluxes I, and I, have diffusional and convective components as a result of
the nonlinear mass transport of a component with a large concentration gradient:

— -~ a“ -~ -~
1:“‘M101( 6:1 )y:h + My, (€1) yis
a
h=—m, (2 ) + My, E)gmts (2)
0y Jy=h
- MD [ ac MD | éc
= () e me T
3N Y y==h Oo Y /y=h

In Egs. (1), (2) the distributions of the velocities and concentrations are determined in
{1, 2] taking into account the nonlinear mass transport of one of the components in the gas

phase. As in [1, 2], use is made here of a mathematical description to the zeroth approxi-
mation with respect to the small parameter (hy/%)?.

The solution of the problem (1) makes it possible to determine the mass transfer rate:

I 1 - 1
Jy = Myk1 (€10 — YaCr0) = —— E‘ Frdx = Myky (c10/%1 — Cr0) = T\ Idx.

I b

The Sherwood numbers for the gas and the liquid are found from Eq. (2):

Shy = ill _ 1 Fdx,
Dy M; Dy (€30~ %aC10)
(3)
: ;
Shy = kil _ Ja j Ldx.
D, My Dy (c10 — ¥1C10) 0
On converting in Eq. (1) to the dimensionless variables
x=27-4=F px m=2 VX, 7)= —=2—,
I & U g Uy
HX) =, v=2 v, n="—, vix = 2, (4)
ho hq o qlly
G, = §1—'X1’310 . C= ~C1“—C1o i
C10 — Xal1o C10/%1 — 10
where
hy - b ght . = D1
& = y Eg = ——; Uy = v &= =
’ I ° [ ° 3v U
the problem (1) assumes the following form in terms of the new variables
= OBy o 0T, (e \POT _ ot 5)
U——L+V—T‘—:(—-) LC NI s
oX oy e ) oy POV
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X=0,C =1
Y = 0, 61 = (Cyy=n’

?+&éﬁd;
2.
% dC, Ly aC, =F016 C, :
oX aYy ay?
X = O, Cl = O;
y—o, L1 g (6)
JYy
aC ac
Y — H, 1 — ~1 )
oY Bl( v ~=0+
D [ XICIO = } [ aé
0,8, ~2 | — + (@)s (——,— —
+ 0 D,y €10 X110 ( l)y__o oY ))7=0
Dp* [ K110 } ' aC
e ~ + (Cov (——— ,
® 31)195I= LCy0— X1l (Brlv=n 0Y /9=
where
=Sel/% e =5V S ::-Z_,éhzzéi-;
g, =2"5c"" ¢ c Cy 33 5
h 8xaD Dl
60 — ‘_-”0___’ ﬁl OXI 1 : F ;= 12
6 ‘Dl uOh()

In [1, 2] it has been shown that §, > 0 in cases of nonlinear mass transport of highly
soluble gases, i.e., it is possible to leave out of consideration the terms in Egs. (5) and
(6) which are proportional to §,.

Mass Transport in the Gas Phase. The rate of mass transfer is limited by mass trans-
port in the gas phase when R; « 1. In this case it follows directly from Eq. (6) that

aC
ﬁlzoi (—.—1) 207 CIE(): (7)
Y=H

oY

and the problem reduces to finding a solution of Eq. (5). For this purpose it is necessary
to introduce the self-similarity variables

- 1 ~ g ~ ~
U= —ed, V= O —0), C,=1-1Y,
D=0, ¥Y=T(n n—j—

b E) 21/}.

Thus, Eq. (5) assumes the form
T 4 a0 =0, F(0) =1, ¥(o0)=0, (9)

where a = £%/¢, and ¢(n) takes into account the nonlinear mass transport in the gas and is
determined in [2] by asymptotic methods. Since & depends on two small parameters 6; and 8;,
the solution of (9) can be sought in the form of the expansion A = A, + 0:A; + 8,A; + 6%A;,
+ 03A53 + 0,063A;5 + ..., where A is a vector function A = (&, ¥). By using the_approxima-
tion obtained for & in [2] a series of boundary value problems are obtained for Y.

In the zeroth approximation it is possible to write

iy 2 ¥, =0;
Yo -+ af (2) Yo (10)

€

. - 2
Ty 0) =1, Ty(o0) = 0 (z _ 2 n\} .

The solution of Eq. (10) has the form
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Wy (n) = (5(81’ p)ap,
%1 8

where

wl,w

Qo= fE(ﬁp p)dp ~ 3,015c7°%%, E(ey, p) = exp{
0

To the first approximation with respect to 6; it is found that

V) +af 071 = 2);
¥,(0) = T1(00)=0,
i.e., o
- 3 3 H 3
= — E (s, pYdp — E (25, 2),
Fal) 20.Pg1 200951 é ' 2001
while to the first approximation with respect to 64,
¥+ af ()¥s = 9@ E (e 2);

25ePor
T3 (0) = ¥y (c0) =0,

where

To the second approximation with respect to 8; it is found that

F(é)‘{————‘—“‘f (z )—

ey, 2026 0p

F@F () ]E(sl, 2

¥, Laf2) ¥, :{

40‘-2%1
P11 (0) = ¥y (00) = 0,

i.e.
- / Yacqyy 9 Sa%e2p,; \
¥ =|— — E(s, p)d
11(7]) ( 8(P(2)l 4a2(pgl + 32a2q)gl )é (1 p) p+
z p
:gs [ Fdz | Eter p)dp+
01 § ¢
9 Oq%e2 7
+W[I~E(Snzﬂ ~ S0 ° f *(p)E (21, p)dp,
~ Y01
where

u= [ P(p) E (&1, p)dp ~ 3,0118c7" %% ;
0

c©

P
Qo1 = f ” F(s)ds J E (ey, p)dp & 3,052 Sc7 1283,
a 0

To the second approximation with respect to 8, it is found that

3 f(s)ds }.

(11)

(12)

(13)

(14)
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“ p
Pss1 = Sq“v 9 (s) ds rE(Sl’ p)dp ~ 24 S %,

00

Pagy =

Sty g

P
| [ %@ ds | E(er, p)dp ~ 0,328 Se7" %
0

The effect of complex interactions is taken into account by the term proportional to

6183:
. -, €a 6a =
W3+ of Q)¥1a = [—(‘%—Ef& ¢(z)— m@(z)—
0 Q1o 0 Qo1
3a? ,
*—‘Z—“‘—f (z)jw(s)ds+
087 @y Poy
2 3
+—%&%'@——Jl—f@wﬂ5mjx
. ae? @ Po1 a8? @) @y
@13 0y = ;yls(w) =0,
i.e.,
- 3031 (Poy -+ Po) 309151
y S
o) { 2ee¢; 951 + 20eQo 95 +
_:.3_@_“1___ \E(gh )dp.}_M([S(P(S)dS]E(gl, p)dp__.
200 Go1 Iy 20e95 Qo1 § Ly
3 fris 16
— e [ [ 9 (9ds | Een p1dp + (16)
208Q Por 4 5
2 Eey o) el9ds— [0 () E (ex, p)dp+
200G P 3 2@8¢M%10
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B (1~ E e, 2
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where
o p_
Q131 = j Hcp(s)dsjE(sl, p)dp ~ Sert%
b b
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@i = [ @ (p) E (er, pldp 4,18 5c7 "%
0

The expressions (11)-(16) make it possible to determine the Sherwood number. In order
to do this it is necessary to substitute Eqs. (2) and (4) into Eq. (3). In this way, it is
found that

s"lzl=1/£>7e[~f<—a—§l—j ax—8, 2 5 e 5]( ) ]
g \ oY Sy, Dycio— %1610 § \ V0

In the case of a highly soluble gas x; - 0, i.e., the second term in the expression
for the Sherwood number is unimportant, so that

1 A
Sh= —VBe [ (L dX = /Pe ¥ (0), (17)
v eof( = VBt ()

~

Y=0

where Pe = u,%/D, and ¥'(0) is defined by the expression
0 2 3 2a
V(0)= — ——— O —— — 6, 0
£Qq1 oePsi & ©oPo1

. G% (90([)21 T 9 gaz P11 \___ (18)

195, ' 202y 1602 93 |

3 E] 7 3 EP) E]
8200 P51 SscPome &5 P01 &4y Por /

— 8,0, 3a
&P Py 1
Comparison of ¥1(0) with ¥'(0) (obtained in [2]) shows that it differs only slightly
because of the small differences in the values of €; and €. It follows from this that in
cases of multicomponent mass transport in which the mass transport of one component is non-

linear as a result of a large concentration gradient, the mass transport coefficients of
all the other components will have similar values.

e ( 200,04, 202@%1 a*Py31 . 4ac—P331

(Pa1 (1 -} For. \ + P+ .‘P131 }

@y /

Mass Transport in the Liquid Phase. The rate of mass transfer is limited by the mass

transport in the liquid phase when B; > 1. In this cae it follows directly from Eq. (6)
that

_ aC -
=0, ( ayl)~ =0, Ci=1, (Chy=ua=(Cy)i—o=1, (19)

and the problem reduces to solving Egq. (6) with the conditions given by Eq. (19) and U, V,
and H as defined in [2].

In order to solve Eq. (6) it is necessary to introduce the diffusion boundary layer
variable

v, =4~ (20
S Ve )
Equation (6) then assumes the form
3G HU—_V oC, _ 0C, .
X VFo, dy, ovi'

X=0, C;=0 (21)
V,=0, C;=1;
Yl—")oo, Clzo.

If the following notation is used,
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61 = FOl, 62 - 62, 63 = 6083, 64 - 6093

’

m (22)

then to a first approximation with respect to the small parameters §
problem (21) can be written as

i (i=1,...,4) the
3 0C,
{—2—(1——51 1)']‘6 V—X 8, (V —V )] +

+[52 a5 N iy 1 1aclzazcl;
4eX VX epo VX e VX | Y, oY} (23)
X=0, C,=0;
V=0 C,=0;
YVi—>o, C;=0.

For solving the problem (23) it is necessary to use the expansion

EQ,

Cy = Cyo+ 8:Cy1 + 8,015+ 8Ca3 + 6,01 + -+ - (24)
Thus, by using the perturbation method a series of boundary value problems is obtained. To
the zeroth approximation it is possible to write

_é_ aCm a ClO .
2 ox  ov:’
,-X =0, Cyw=0;

Yl = O, Cl() == 17

Yi—>o00, Cp=0
i.e.,

; gy \1/2
Gt 5= ()"

To the first approximation with respect to &§; it is found that

(25)

3 9Cy _ 9°Cy s 0Cy
2 ax vt Vox
X=0, Cy=0;
V=0, Cu=0

Yl —> 00, Cll = 0,
where C,; is determined [6] by the Green's function method

1 v 37}
Cu=——| Y1 VX +—————)exp(—~~——>.
. Vﬁu( ! 2VX) ™ 8X
To the first approximation with respect to §, it is possible to write

’

(26)

3 dCyy, 0%Cyy a 0Cyq , Yy 0Cyp .
2 ox | vy 291/7<( T 9VX ayl)’
X=0, Ciu=0;
Vy=0, C,=0;
Y,—>o, Cip=0,
where the right-hand part is equal to zero, i.e.,
Cy=0. (27)
To the first approximation with respect to §3 it is found that

__3_ 6C13 _da Cl3 + 2
2 98X av?

. 0C Y,  9Cu
"/’— "/— 10 1 10 :
) X ECPO—V)—( Y,

&Py
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X = Os Cl3 - Oy
Yl = O’ C13 == O:
Yl-——)-OO, Cl3 = 0’

where C;; can be found by the Green's function method:

-
oo ) o (Y 4w n (31
To the first approximation with respect to §, it is possible to write
3 3w _0Cy 1 Gy
2 90X aYi  eq VX oY,
X=0, Cuh=0

Y1 =0, Cu=0;
Yl—roo, CM - O,

where C,, is obtained by using Green's function:

_ 2 2 — 3yi —erfc [ 8ri >”2} . 29
Cu=—V W[exp( ‘87‘) \ 8% (29)

Equations (25)-(29) make it possible to determine the Sherwood number. For this pur-
pose it is possible to find directly from Egs. (2)-(4), (20), and [1] that

Lroac, X
Shy= VFe; | (52 ) —
0 1 /y=0

<y

_EO"XCO MDIB [ A1C10 l( ad

dX 4
A P?Dlho 0 ) (30)

Vo0

Cy0 — %1C10 §

1 7 1/ : 9C
5 i1~ Vs 1) dx,
SICEE S A S e B

where Pe; = ug%/D,. From Egqs. (25)-(30) it is found finally that

6P¢; 8, 25, ( 2
Shy = — 7 [1 9T 3eg VL.— 3/

/|

EQqy 3 |’
It can be seen from Eq. (31) that the parameters &; and §, depend on the concentration grad-
ient of the component with intensive mass transfer:

63= ,5:_ I/Dﬁol M(C;—XCO)

(31)

05 ugh iy ’
5= & Duy _M(co— xc0)
00 Dytto 0o ’

i.e., that the rate of mass transport of a component in the liquid is determined by the con-
centration gradient of the component with intensive mass transfer and depends on the direc-
tion of this mass transfer.

The absorption (desorption) of the component with intensive mass transfer leads to a
decrease (increase) in the rates of mass transport of the remaining components in the liquid.
By comparing Eqs. (18) and (31) it can be seen that the effect of the direction of the in-
tensive mass transfer is opposite in cases when the mass transfer of the components with the
small concentration gradients is limited by mass transport in the gas or in the liquid.
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EFFECT OF THE CONCENTRATION DEPENDENCE OF THE
DIFFUSION COEFFICIENT ON THE DISTRIBUTION AND
FLOW OF HYDROGEN IN PALLADIUM MEMBRANES

L. I. Smirnov UDC 539.219.3:669.234.788

Results are presented from the calculation of steady-state profiles of the dis-
tribution and flow of hydrogen in palladium membranes. The distributions are
obtained with allowance for features of the dependence of the diffusion coef-
ficient on hydrogen concentration.

The study [1] examined the effect of a nonlinear hydrogen distribution through the
thickness of metallic membranes, due to the concentration dependence of the diffusion coef-
ficient, on the permeability of the membranes to hydrogen. The study made use of a simple
model relation D(c) [2] which describes phase transformation in hydride-forming metals [3].
However, it has become evident in recent years that along with a minimum corresponding to
phase transformation, the relation D(c) for Pd-H systems has a maximum in the concentration
range ¢ = (0.6...0.7)H/Pd [4-7]. 1In the present study, we discuss the results of calcula-
tion of steady-state profiles of hydrogen distribution in palladium membranes and the flow
of hydrogen through these membranes with allowance for a relation D(c) that reflects the
above features.

In accordance with [7], the concentration dependence of the coefficient of diffusion
of H in Pd is approximately described by the relation

— . ﬁ-‘l au’e _§_Y_ 77(0&'“‘?0 C(I—C)} 1
D(c)—-D(O)[l 6-——[3 +{\-——ac 2cth T > el (1)

where ‘
p=VT1+4dac(l—cy, a=exp(—w/kl)—]1, (2)

while the electronic contribution to the chemical potential of the hydrogen subsystem ue(c)
is determined from the empirical formula [3, Vol. 2, p. 152]:

5
Be@= ¥ (=1 raen, <0656, (3)

n=1

Be () = b(c—¢y), ¢ > 0,656.
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