
6. V. V. Levdanskii, "Mathematical and Physical Questions of Heat and Mass Transfer [in 
Russian], 3-8, Collection of Scient. Research, Inst. Heat and Mass Transfer, Beloruss. 
Acad. Sci., Minsk (1973). 

7. T. D. Sandry and F. D. Stevenson, J. Chem. Phys., 55, No. 8, 4150-4151 (1971). 
8. B. V. Deryagin and S. P. Bakanov, Dokl. Akad. Nauk SSSR, I15, No. 2, 267-270 (1957). 
9. E. M. Sparrow and R. D. Sess, Heat Transfer by Radiation [Russian translation], Lenin- 

grad (1971). 
i0. R. Ziegel and J. Howell, Heat Transfer by Radiation [Russian translation], Moscow (1975) 

(1975). 
ii. V. A. Borodulya, V. I. Kovenskii, and K. E. Makhorin, Heat and Mass Transfer in Dis- 

perse Systems [in Russian] Collection of Scientific Research, Inst. Heat and Mass 
Transfer, Beloruss. Acad. Sci., Minsk, 3-20 (1982). 

NONLINEAR MASS TRANSFER BETWEEN A GAS AND A 

FALLING LIQUID FILM. 

3. MULTICOMPONENT MASS TRANSPORT 

Khr. Boyadzhiev UDC 532.72:532.529 

A solution is obtained for the problem of multicomponent mass transfer between a 
gas and a falling liquid film. The case is considered in which the mass transfer 
of one of the components is limited by the nonlinear mass transport in the gas 
phase. The rates of multicomponent mass transport in the gas and liquid phases 
are determined. 

In the first and second parts of this work [i, 2] it was shown that nonlinear mass 
transfer (as a result of intensive mass transport in the gas phase) leads to significant 
changes in the velocity distributions in the liquid and gas. In the case of multicomponent 
mass transport this leads not only to changes in the rates of transport of the components 
with the large concentration gradients but also to changes in the rates of transport of the 
components for which the concentration gradients do not influence the hydrodynamics of the 
flow. 

The literature contains a number of experimental studies [3-5] in which it has been 
shown that as a result of simultaneous mass transfer in gas-liquid and liquid-liquid systems 
the transport of one component leads to changes in the rates of transport of the others. In 
these cases an increase in the rate of mass transfer is usually observed which is caused by 
the Marangoni effect, since this cannot be explained using the linear theory of mass trans- 
port [6]. 

In the present paper the effect will be considered for the case of multicomponent mass 
transport for the case in which the concentration gradient of one of the components in the 
gas phase influences the hydrodynamics of the flow. 

Mathematical Description. The theory of diffusion in multicomponent systems [7, 8] 
shows that the approximation of independent diffusion can be used not only in the case when 
the concentrations of the components are low, but also when the diffusion coefficients of 
the individual components are similar. This makes it possible to solve the problem of the 
kinetics of nonlinear mass transfer between a gas and a falling liquid film in multicompon- 
ent systems by solving the problem for the transport of any component to the approximation 
of the linear theory of mass transport, where the velocity distribution takes into account 
the effects of the nonlinear mass transport of one of the components. 

Let ~i and c I be the concentrations of any component in the gas and liquid, where mass 
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transport of this component does not influence the hydrodynamics of the flow. The distri- 
butions of these concentrations are determined from the system of equations 

- a ; 1 . -  a~1 = b ~ ~  
u T + v  av - -E l - '  

x = o, cl = ~10; v = ~, 51 = ~1cl; y ~ ~ ,  c l  = ~1o; 

ac~ v Ocl a2cl . (1) 
U -F" =D1 , 

ax Ov ay 2 

x = 0 ,  c1=c10; y = 0 ,  0cl --0; g = h ,  11=7~, 
0y 

where the mass fluxes I z and i z have diffusional and convective components as a result of 
the nonlinear mass transport of a component with a large concentration gradient: 

i ,  =--MIO, ( ) - - \ Og /u=n +Mlv"(cO~="' 

(o 1) (2) 
11 = --MID1 \ Oy ] u=h -}- Mlv,~ (eO~=h, 

~,,,_ MD ( a~ ) v,~- MD / O c  

In  Eqs. (1 ) ,  (2) the d i s t r i b u t i o n s  of  the v e l o c i t i e s  and concent ra t ions are determined in  
[1, 2] tak ing  i n to  account the non l inear  mass t ranspo r t  of  one o f  the components in  the gas 
phase. As in [I, 2], use is made here of a mathematical description to the zeroth approxi- 
mation with respect to the small parameter (h0/~) 2 

The solution of the problem (i) makes it possible to determine the mass transfer rate: 

i ' !  - - i 7 1 d x  = M1/~I ~10/~1 - -  Clo) = ~ i I ~ c l x .  Jx = M1~1 (Clo - -  %IClo) = - ~  8 I 5 

The S h e r w o o d  n u m b e r s  f o r  t h e  g a s  and  t h e  l i q u i d  a r e  f o u n d  f r o m  Eq. ( 2 ) :  

fj _ 1 c gh~ Tldx, 
b~ MID~ (~1o-- xlClo) d 

klI _ %1 ~{ 
$hi D I  M I D I  (Cio - -  %iqo)  ~ I 1 d x .  

On converting in Eq. (I) to the dimensionless variables 

x x 
l 

w h e r e  

h 
H (X) --  , 

h0 

y--h 8(x, ?)= ~ ,9(x, ?)= # 
' .o ~o u0 

y =  9_, U(X, y )____ ,u  V(X, Y )=  -v  
ho uo 8oUo 

C l  = cl  - -  XlClo C - cl  - -  Clo 
Clo - -  %1Clo ~1oI%1 - -  Cio 

~ o -  ho . Y o = + ;  
l ' 3v  uo 

t h e  p r o b l e m  ( 1 )  a s s u m e s  t h e  f o l l o w i n g  f o r m  i n  t e r m s  o f  t h e  new v a r i a b l e s  

. o =  gh_~; 6 =  ~ b l  

(3) 

(4) 

a x  + f /  = aTf ] aY~ q- 6oH'O a}" ' 
(5) 
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X = 0 ,  C ~ = I ;  

= O, Cl  = (Cl)Y=ft; 
P-~oo, ~ =  1; 

U OC1 @ V  OCj_ _FOlOZCl . 
OX OY OY 2 ' 

X = O ,  C~=O; 

Y--~H,  

D [ ~ )~1C1. 0 
+ 0 ~ , 1 ~  C~o-- z~C~o 

~ ~ 0 0 ~  
D19~' ~ {c'1o -- %1Clo 

Y = O, OCx O; 
OY 

OCl --~1( 0~1 I 
OF \ 0~z /r + 

+ (c~)~=0] ' a~ 

(6) 

where 

-5-' 

ho 6o%1[)1 Fo I = Dlt 
80 = 7 - ;  ~ : 0--7--; goh---- ~ 

In [i, 2] it has been shown that 6 0 ~ 0 in cases of nonlinear mass transport of highly 
soluble gases, i.e., it is possible to leave out of consideration the terms in Eqs. (5) and 
(6) which are proportional to 6 0. 

Mass Transport in the Gas Phase. The rate of mass transfer is limited by mass trans- 
port in the gas phase when ~z << i. In this case it follows directly from Eq. (6) that 

( oc~ ) =o, c~-o, (7) 
[h=O,  \ OF Y=H 

and t h e  problem r e d u c e s  t o  f i n d i n g  a s o l u t i o n  of  Eq. ( 5 ) .  For  t h i s  pu rpose  i t  i s  n e c e s s a r y  
t o  i n t r o d u c e  t h e  s e l f - s i m i l a r i t y  v a r i a b l e s  

2 2]/-X O]qy - -  r C1 = 1 --CF, 
(8) 

F 
�9 = �9 (% ~ = �9 (n), ~ = 2 ] # 2  

Thus,  Eq. (5) assumes t h e  form 

~ " + a @ @ '  = 0 ;  @(0) = 1, @ ( ~ ) =  0, ( 9 )  

where a = E~/e, and @(q) takes into account the nonlinear mass transport in the gas and is 
determined in [2] by asymptotic methods. Since @ depends on two small parameters 81 and 03, 
the solution of (9) can be sought in the form of the expansion A = A0 + OlAf + 0aA3 + 8~A11 
+ 8~As3 + 818~A13 + ..., where A is a vector function A = (@, ~). By using the~approxima- 
tion obtained for # in [2] a series of boundary value problems are obtained for ~. 

In the zeroth approximation it is possible to write 

% + af (z) r = o; 

~ , o ( 0 ) = 1 , % ( o o ) = o  z =  - -  ~ - 
8 j 

The s o l u t i o n  o f  Eq. (10) has the  form 

(10) 
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VF o (q) = 1--  1 i E (e~, p)dp, 
q~ol 6 

where 
co 

q~o~= j" E (s. p) dp 
0 

~3,01,Sc] -~ E(s l ,  p ) = e x p  - -  f(s)ds �9 

To the first approximation with respect to 0 1 it is found that 

i.e. , 

G' + ~f (z)G = 3_._~ f, (z) E (~, z); 
c~8%1 

~ (o) = ~ q  (oo) = o, 

~1 (vl) = 3 3 i E (~.,, p) dp 3 E (el, z), 
2aq~ol 2aq~ 1 ~ 2 ~ q ) 0 1  

while to the first approximation with respect to 0 a, 

~'~ + af (z)~'~ 4a - ~ (z) E (sl, z); 
e3q%q~ol 

~G (o) = cr~ (oo) = o, 

i.e. , 

= - -  ~ (s) ds E ( s .  p) clp 
sqb%~ ~ o 

where 

2 

a%~ !' E (s~, p) 0 ,  

=~ J 
= .i'lS ds i e p)dp 6,5s -~ 

0 0 

To the second approximation with respect to 0 1 it is found that 

i.e. 

where 

[ ~  9a 
"~[,@af(z)~;,= 9a F(z)@ 2aZe(p~, 

9a~ f (~) f' (z) ] E (~,, z); 
4o:2q%1 

�9 ,, (o) = ~ , ,  (oo)  = o, 

f '  ( z ) -  

~g11 01) = ( 
9ae%~ z 

9 9a%2%~ j" E (sl, p) dp Jr- 

@ ~ F (s) dz p) dp@ 

z 
9 [1 - -  E (en z)] 9a~e2 [ fz (p) E (e~, p) dp, 

ff 4a2ep21 32~)%1 

i 
%z= p(p)E(e~, p)dp ~, 3,011ScF ~'6~ ; 

0 

%~= S [ i F (s) ds l E (sl' p) dp "~ 3'052 ~-(l'283 " 
0 0 

To the second approximation with respect to 8 3 it is found that 

( I 1 )  

(12) 

(14) 
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i.e., 

where 

The 
OzO~: 

i.e., 

where 

effect 

I "~ 

8~ ~(~) 4~ i ] (z) ~(s) ds E(q,  z); 

}=~ (0) = ~ (oo) = o, 

(~ ~ a%%1 a q)31 a2q)831 

- -  ;g 

-1- ~ - T  E (81, p) dp q- eqo~ q~01 v: ~Po q)ol 

~zq)~ q~t. ~ (p (s) ds ] E (q, p) dp-- 
0 

P 

2 ez q)ozqh ~5 

§ 

sa q~ %1 

(15) 

r-gaal= i[.i q~(s) ds]=E(e,, p)dp~24ScT-"a; 
0 0 

= [ v 

0 0 

of complex interactions is taken into account by the term proportional to 

~]'3 -{'- of (z)~'i3 = [ 6a (t9ol --}-- %) 
8 2 2 

c~e epo qho 
q~(z) 6a ~(z) - -  

sea % %1 
z 

aa~ [' (z) 5 q~ (s) ds + 
~ez q% ~oi o 

"-k 3a z cPa ff 3a 2 ] ~ 'po '~  (z) f(z)~(z) E(~, z); 
o'-ez % q~ol 

% .  (o) = ~ ,~  (oo) = o, 

3a%1 (q)01 "-~ q?o) 3a%al 
;v1~ (n) 2 ~  q~, + 2~,~o~o ~, + 

3a%:,i E (q, p) dp-F cp (s) p) dp -- 
2o~e% q%l . 

2~xeq% %1 

" i "-k 3a E (el, z) .} r (s) ds 3a " ~ (p) E (~, p) dp + 
2~z~q%q%1 o 2r b 

3~q%1 [ l - -  E (gl ,  Z)I' 
-] 2~eq~oq~ 1 

(16) 

i _ 
0 0 
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-~a = i 9 (P) E (e~, p)dp ~ 4,18 ScT ~ 
0 

The expressions (11)-(16) make it possible to determine the Sherwood number. In order 
to do this it is necessary to substitute Eqs. (2) and (4) into Eq. (3). In this way, it is 
found that 

!" \ ' - ~ ' / r - = O  ]~lClO-- ~1C10 0 

In the case of a highly soluble gas Xz * O, i.e., the second term in the expression 
for the Sherwood number is unimportant, so that 

o t og )s 
where Pe = u0~ID, and ~'(0) is defined by the expression 

~ '  (0) = - -  2 01 3 - 0~ 2aqh3 
egol ~eg~, ~ 9o9~, 

- -  O~ [ 9a(P~l j_ 9 9a  2 8911 ) 
4q921 ' 20~2 8(p~ 1 160~2 q)g 1 

(18) 

_ _ ~  ( 2a%%1 2a2(p~, a2q%a 4a~p3al/ 
2 3 2 - t "  - - -  ~,.~ 9 o 9 o ,  ~ 3 9 ~ 9 ~ 1  3 2 2 ~ 8 (Po q%1 e ~0 ~01 / 

(P3i 1 -~ / ~- (])131 ~- q)i3i I 

% / 

Comparison of T'(0) with ~'(0) (obtained in [2]) shows that it differs only slightly 
because of the small differences in the values of E i and a. It follows from this that in 
cases of multicomponent mass transport in which the mass transport of one component is non- 
linear as a result of a large concentration gradient, the mass transport coefficients of 
all the other components will have similar values. 

Mass Transport in the Liquid Phase. The rate of mass transfer is limited by the mass 
transport in the liquid phase when ~i >> i. In this cae it follows directly from Eq. (6) 
that 

~ 7 ' =  0, \ - ~ - / g = 0  = 0, C 1 ~  1, (COy= H = (C1)~=0 = 1, ( i 9 )  

and t h e  p rob lem r e d u c e s  t o  s o l v i n g  Eq. (6)  w i t h  t h e  c o n d i t i o n s  g i v e n  by Eq. (19)  and U, V, 
and H as d e f i n e d  in  [ 2 ] .  

In  o r d e r  to  s o l v e  Eq. (6)  i t  i s  n e c e s s a r y  to  i n t r o d u c e  t h e  d i f f u s i o n  boundary  l a y e r  
v a r i a b l e  

H--Y 
r1= VK;T (20)  

Equation (6) then assumes the form 

U c)C1 H ' U - - V  OC1 
ox-  + V-F4 drl - 

X = O, C~ = O; 

Y1----O, el---- l ;  

Y1--+oo, C1---- O. 

02C1 . 
aY~ ' 

If the following notation is used, 

(21) 
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61=Fol, ~2=02, 63=0o03, 6~= 0003 , 
F~ (22) 

then to a first approximation with respect to the small parameters 6i (i = i, .... 4) the 
problem (21) can be written as 

(1 61Z~)+ 6~ 2 8 ~  eq)0 

1 0C1 02C1 . aY1 8~ Y1 ] 
+ 82 4 e X ~  ~ o ~  +6~ . . . . .  , ~o V ~  oYI az~ (23) 

X- -O,  C 1 = 0 ;  

YI=O,  C 1 = 0 ;  

Y1--+-oo, C1= O. 

For solving the problem (23) it is necessary to use the expansion 

e l  = C 1 0 - ~ 1 C l i ~ - ~ 2 0 1 2 - ~ 3 C l B ~ - 6 ~ 0 1 ~  - ' ' ' .  (24) 

Thus, by using the perturbation method a series of boundary value problems is obtained. To 
the zeroth approximation it is possible to write: 

3 aclo 02Clo. 
2 OX av~'  

i.e., 

,X = O, Clo=0;  

Y1 = O, C10 = 1; 

YI-+ oo, C10 = O, 

( 3y2  t 1/2 
Clo = erred, ~ = \ - ~ - - ]  " (25) 

To the first approximation with respect to 61 it is found that 

0cll 0~cli 3 y2 OClo 
OX - aY# + T ox  

X = O ,  Cl1=0;  

Yl = O, e l l  = O; 

Y1--+~176 C n = O ,  

where C11 is determined [6] by the Green's function method: 

To the  f i r s t  approx imat ion  wi th  r e s p e c t  t o  62 i t  i s  p o s s i b l e  to  w r i t e  

3 0C1~ 02C12 a ( 0Clo gl 0Clo ) . 
2 0 X  a Y e - -  2 ~ - ~  \ OX q- 2~-'-X ~-11 ' 

X = O ,  C12=O; 

Y l = O ,  C1~=0; 

y~-+oc,  C1~=0, 

where the right-hand part is equal to zero, i.e., 

C n ~ O .  (27) 

To the first approximation with respect to 63 it is found that 

3 0C13 _ 02C13 2 OClo Y1 OClo . 
2 ax  ar  ~, + e% ( V - U f - - l / X )  ax -~ e%1/-2 aY1 ' 
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X=0, C13=0; 

F1=0, C13=0; 

F1 -+ oo, C~3 = 0, 

where C1a can be found by the Green's function method: 

C ~ 8 = V  y23~ e%l ( ] / ~ -  YI~/X 4 Y1) e x P ( 3  3Y~')8X, " (28) 

To the first approximation with respect to 64 it is possible to write 

3 OCa~ __ 0~C1~ 1 dClo . 

2 OX OY~ e%W-x  c)Y z ' 

X=O, CI~=0; 

YI=O, C1~=0; 
YI-~ ~ ,  C1~ = O, 

where Cz4 is  obtained by using Green's funct ion:  

2 W ~ 3 ~ [ e x p (  3Y ~ / 3Y~ (29) Cl~= 

Equations (25)-(29) make it possible to determine the Sherwood number. For this pur- 
pose it is possible to find directly from Eqs. (2)-(4), (20), and [i] that 

sh = ( o \ - b - - ~ /  d X - -  
Y,=O 

% p~D1 ho L Clo -- %lClO O ~ '~=0 

where Pea = u0s From Eqs. (25)-(30) i t  is found f i n a l l y  tha t  

9 3e~0 -3  - -  

( 3 1 )  

e~0 

I t  can be seen from Eq. (31) tha t  the parameters 62 and 64 depend on the concent ra t ion  grad- 
i en t  of the component with intensive mass transfer: 

6~ - ~* Vb-~.ol M (g - ~o) 

a~ = '~* 1 / / - g  ~o M go - -  Z~o) 

i . e . ,  t ha t  the r a t e  of mass t ranspor t  of a component in the  l i qu id  is  determined by the con- 
cen t r a t ion  gradient of the component with intensive mass transfer and depends on the direc- 
tion of this mass transfer. 

The absorption (desorption) of the component with intensive mass transfer leads to a 
decrease (increase) in the rates of mass transport of the remaining components in the liquid. 
By comparing Eqs. (18) and (31) it can be seen that the effect of the direction of the in- 
tensive mass transfer is opposite in cases when the mass transfer of the components with the 
small concentration gradients is limited by mass transport in the gas or in the liquid. 
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EFFECT OF THE CONCENTRATION DEPENDENCE OF THE 

DIFFUSION COEFFICIENT ON THE DISTRIBUTION AND 

FLOW OF HYDROGEN IN PALLADIUM MEMBRANES 

L. I. Smirnov UDC 539.219.3:669.234.788 

Results are presented from the calculation of steady-state profiles of the dis- 
tribution and flow of hydrogen in palladium membranes. The distributions are 
obtained with allowance for features of the dependence of the diffusion coef- 
ficient on hydrogen concentration. 

The study [i] examined the effect of a nonlinear hydrogen distribution through the 
thickness of metallic membranes, due to the concentration dependence of the diffusion coef- 
ficient, on the permeability of the membranes to hydrogen. The study made use of a simple 
model relation D(c) [2] which describes phase transformation in hydride-forming metals [3]. 
However, it has become evident in recent years that along with a minimum corresponding to 
phase transformation, the relation D(c) for Pd-H systems has a maximum in the concentration 
range c = (0.6...0.7)H/Pd [4-7]. In the present study, we discuss the results of calcula- 
tion of steady-state profiles of hydrogen distribution in palladium membranes and the flow 
of hydrogen through these membranes with allowance for a relation D(c) that reflects the 
above features. 

In accordance with [7], the concentration dependence of the coefficient of diffusion 
of H in Pd is approximately described by the relation 

D (c) = D (0) 1--6 ~ - -  1 + c th  , ( 1 ) 
Oc 2 2k T , 

where 

= V l + 4 a c ( 1 - c ) ,  t z - e x p ( - - w / k T ) - - l ,  (2) 

while the electronic contribution to the chemical potential of the hydrogen subsystem ~e(C) 
is determined from the empirical formula [3, Vol. 2, p. 152]: 

5 

~,e (c) ----- X(--1)n-~a,Lcn,  c<0 ,656 ,  (3 )  

P-e (c) = b (c - -  cl), c ~ 0,656. 
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